China Wholesale High Precision Planetary Gearbox With Competitively Price planetary gearbox bearings

Item Description

Wholesale Substantial Precision Planetary Gearbox With Competitively Price tag

This helical planetary gearbox is utilised for servo motor and related device which need to have to lessen speed or enlarge torque! CZPT helical planetary gearboxes external diameter from sixty four to 110, equipment ratio from 3 to 100! It has higher precision and are extensively used with servo motor this kind of like Panasonnic,Fuji, Mitsubishi, Omran,Delta, Teco.

Item Parameters

1.The unique flange output produced can get greater set up flexibility
two.The fuselage dimensions is shorter and the installation area need is minimal
three.No axis double help case world carrier construction,higher trustworthy,appropriate for high-velocity frequent forward and reverse rotation
four.With axial clearance adjustment operate
five.The rotating frame bearing can be switched. Right after altering into angular get in touch with bearing, the bearing capacity of axial force and radial power is tremendously improved
6.Effect resistance, can adapt to higher acceleration and deceleration situations
seven.Helical equipment transmission,low backlash,and carry potential higher
8.Dimensions assortment:64–110mm
nine.Ratio selection:3-100
10.Precision assortment:1-3arcmin(P1)3-5arcmin(P2)

Specifications PG64 PG90 PG110
Technal Parameters
Max. Torque Nm 3times rated torque
Emergency Quit Torque Nm 3times rated torque
Max. Radial Load N 2050 4100 8200
Max. Axial Load N 513 1571 2050
Torsional Rigidity Nm/arcmin thirteen 31 82
Max.Input Velocity rpm 6000 6000 4500-6000
Rated Input Speed rpm 4000 3000 3000
Noise dB ≤58 ≤60 ≤65
Average Existence Time h 20000
Efficiency Of Total Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤3 ≤3 ≤3
L2 arcmin ≤5 ≤5 ≤5
P2 L1 arcmin ≤5 ≤5 ≤5
L2 arcmin ≤8 ≤8 ≤8
Minute Of Inertia Desk L1 four Kg*cm2 .13 .fifty one 2.87
5 Kg*cm2 .13 .47 two.seventy one
seven Kg*cm2 .thirteen .45 two.sixty two
ten Kg*cm2 .03 .forty four two.57
L2 sixteen Kg*cm2 .03 .23 .forty seven
twenty Kg*cm2 .03 .23 .forty seven
25 Kg*cm2 .03 .23 .forty seven
28 Kg*cm2 .03 .23 .47
35 Kg*cm2 .03 .23 .47
40 Kg*cm2 .03 .23 .forty seven
50 Kg*cm2 .03 .2 .forty four
70 Kg*cm2 .03 .2 .44
100 Kg*cm2 .03 .2 .44
Complex Parameter Level Ratio   PXR42 PXR60 PXR90
Rated Torque L1 four Nm 40 a hundred and twenty 220
five Nm forty a hundred twenty five 260
seven Nm forty a hundred twenty five 260
10 Nm 35 eighty one hundred sixty
L2 sixteen Nm fifty a hundred and twenty three hundred
20 Nm fifty a hundred and twenty three hundred
25 Nm fifty 125 350
28 Nm fifty 120 three hundred
35 Nm fifty a hundred twenty five 350
forty Nm fifty one hundred twenty five 350
50 Nm fifty one hundred twenty five 350
70 Nm fifty one hundred twenty five 350
a hundred Nm 35 eighty 220
Degree Of Defense   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg one.three 3.four 7.1
L2 kg 1.9 four.seven nine.5

Firm Profile

Packaging & Shipping

one. Guide time: 7-ten operating days as common, 20 doing work times in active time, it will be dependent on the detailed get quantity
2. Supply: DHL/ UPS/ FEDEX/ EMS/ TNT

Application: Industrial
Speed: Low Speed
Function: Driving
Casing Protection: Closed Type
Starting Mode: Direct on-line Starting
Certification: ISO9001

###

Samples:
US$ 370/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specifications PG64 PG90 PG110
Technal Parameters
Max. Torque Nm 3times rated torque
Emergency Stop Torque Nm 3times rated torque
Max. Radial Load N 2050 4100 8200
Max. Axial Load N 513 1025 2050
Torsional Rigidity Nm/arcmin 13 31 82
Max.Input Speed rpm 6000 6000 4500-6000
Rated Input Speed rpm 4000 3000 3000
Noise dB 58 ≤60 ≤65
Average Life Time h 20000
Efficiency Of Full Load % L195%       L290%
Return Backlash P1 L1 arcmin ≤3 ≤3 ≤3
L2 arcmin ≤5 ≤5 ≤5
P2 L1 arcmin ≤5 ≤5 ≤5
L2 arcmin ≤8 ≤8 ≤8
Moment Of Inertia Table L1 4 Kg*cm2 0.13 0.51 2.87
5 Kg*cm2 0.13 0.47 2.71
7 Kg*cm2 0.13 0.45 2.62
10 Kg*cm2 0.03 0.44 2.57
L2 16 Kg*cm2 0.03 0.23 0.47
20 Kg*cm2 0.03 0.23 0.47
25 Kg*cm2 0.03 0.23 0.47
28 Kg*cm2 0.03 0.23 0.47
35 Kg*cm2 0.03 0.23 0.47
40 Kg*cm2 0.03 0.23 0.47
50 Kg*cm2 0.03 0.2 0.44
70 Kg*cm2 0.03 0.2 0.44
100 Kg*cm2 0.03 0.2 0.44
Technical Parameter Level Ratio   PXR42 PXR60 PXR90
Rated Torque L1 4 Nm 40 120 220
5 Nm 40 125 260
7 Nm 40 125 260
10 Nm 35 80 160
L2 16 Nm 50 120 300
20 Nm 50 120 300
25 Nm 50 125 350
28 Nm 50 120 300
35 Nm 50 125 350
40 Nm 50 125 350
50 Nm 50 125 350
70 Nm 50 125 350
100 Nm 35 80 220
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 1.3 3.4 7.1
L2 kg 1.9 4.7 9.5
Application: Industrial
Speed: Low Speed
Function: Driving
Casing Protection: Closed Type
Starting Mode: Direct on-line Starting
Certification: ISO9001

###

Samples:
US$ 370/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specifications PG64 PG90 PG110
Technal Parameters
Max. Torque Nm 3times rated torque
Emergency Stop Torque Nm 3times rated torque
Max. Radial Load N 2050 4100 8200
Max. Axial Load N 513 1025 2050
Torsional Rigidity Nm/arcmin 13 31 82
Max.Input Speed rpm 6000 6000 4500-6000
Rated Input Speed rpm 4000 3000 3000
Noise dB 58 ≤60 ≤65
Average Life Time h 20000
Efficiency Of Full Load % L195%       L290%
Return Backlash P1 L1 arcmin ≤3 ≤3 ≤3
L2 arcmin ≤5 ≤5 ≤5
P2 L1 arcmin ≤5 ≤5 ≤5
L2 arcmin ≤8 ≤8 ≤8
Moment Of Inertia Table L1 4 Kg*cm2 0.13 0.51 2.87
5 Kg*cm2 0.13 0.47 2.71
7 Kg*cm2 0.13 0.45 2.62
10 Kg*cm2 0.03 0.44 2.57
L2 16 Kg*cm2 0.03 0.23 0.47
20 Kg*cm2 0.03 0.23 0.47
25 Kg*cm2 0.03 0.23 0.47
28 Kg*cm2 0.03 0.23 0.47
35 Kg*cm2 0.03 0.23 0.47
40 Kg*cm2 0.03 0.23 0.47
50 Kg*cm2 0.03 0.2 0.44
70 Kg*cm2 0.03 0.2 0.44
100 Kg*cm2 0.03 0.2 0.44
Technical Parameter Level Ratio   PXR42 PXR60 PXR90
Rated Torque L1 4 Nm 40 120 220
5 Nm 40 125 260
7 Nm 40 125 260
10 Nm 35 80 160
L2 16 Nm 50 120 300
20 Nm 50 120 300
25 Nm 50 125 350
28 Nm 50 120 300
35 Nm 50 125 350
40 Nm 50 125 350
50 Nm 50 125 350
70 Nm 50 125 350
100 Nm 35 80 220
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 1.3 3.4 7.1
L2 kg 1.9 4.7 9.5

A Brief Overview of the Spur Gear and the Helical Planetary Gearbox

This article will provide a brief overview of the Spur gear and the helical planetary gearbox. To learn more about the advantages of these gearboxes, read on. Here are a few common uses for planetary gears. A planetary gearbox is used in many vehicles. Its efficiency makes it a popular choice for small engines. Here are three examples. Each has its benefits and drawbacks. Let’s explore each one.
planetarygearbox

helical planetary gearbox

In terms of price, the CZPT is an entry-level, highly reliable helical planetary gearbox. It is suitable for applications where space, weight, and torque reduction are of high concern. On the other hand, the X-Treme series is suitable for applications requiring high-acceleration, high-axial and radial loads, and high-speed performance. This article will discuss the benefits of each type of planetary gearbox.
A planetary gearbox’s traction-based design is a variation of the stepped-planet design. This variation relies on the compression of the elements of the stepped-planet design. The resulting design avoids restrictive assembly conditions and timing marks. Compared to conventional gearboxes, compound planetary gears have a greater transmission ratio, and they do so with an equal or smaller volume. For example, a 2:1 ratio compound planet would be used with a 50-ton ring gear, and the result would be the same as a 100-ton ring gear, but the planetary disks would be half the diameter.
The Helical planetary gearbox uses three components: an input, an output, and a stationary position. The basic model is highly efficient and transmits 97% of the input power. There are three main types of planetary gearboxes, each focusing on a different performance characteristic. The CZPT basic line is an excellent place to start your research into planetary gearboxes. In addition to its efficiency and versatility, this gearbox has a host of modular features.
The Helical planetary gearbox has multiple advantages. It is versatile, lightweight, and easy to maintain. Its structure combines a sun gear and a planet gear. Its teeth are arranged in a way that they mesh with each other and the sun gear. It can also be used for stationary applications. The sun gear holds the carrier stationary and rotates at the rate of -24/16 and -3/2, depending on the number of teeth on each gear.
A helical planetary gearbox can reduce noise. Its shape is also smaller, reducing the size of the system. The helical gears are generally quieter and run more smoothly. The zero helix-angle gears, in contrast, have smaller sizes and higher torque density. This is a benefit, but the latter also increases the life of the system and is less expensive. So, while the helical planetary gearbox has many advantages, the latter is recommended when space is limited.
The helical gearbox is more efficient than the spur gear, which is limited by its lack of axial load component. The helical gears, on the other hand, generate significant axial forces in the gear mesh. They also exhibit more sliding at the points of tooth contact, adding friction forces. As such, the Helical planetary gearbox is the preferred choice in servo applications. If you’re looking for a gearbox to reduce noise and improve efficiency, Helical planetary gearboxes are the right choice.
The main differences between the two types of planetary gears can be found in the design of the two outer rings. The outer ring is also called the sun gear. The two gears mesh together according to their own axes. The outer ring is the planetary gear’s carrier. Its weight is proportional to the portion of the ring that is stationary. The carrier sets the gaps between the two gears.
Helical gears have angled teeth and are ideal for applications with high loads. They are also extremely durable and can transfer a high load. A typical Helical gearbox has two pairs of teeth, and this ensures smooth transmission. In addition, the increased contact ratio leads to lower fluctuations in mesh stiffness, which means more load capacity. In terms of price, Helical planetary gears are the most affordable gearbox type.
The outer ring gear drives the inner ring gear and surrounding planetary parts. A wheel drive planetary gearbox may have as much as 332,000 N.m. torque. Another common type of planetary gearbox is wheel drive. It is similar to a hub, but the outer ring gear drives the wheels and the sun gear. They are often combined over a housing to maximize size. One-stage Helical gears can be used in bicycles, while a two-stage planetary gear system can handle up to 113,000 N.m. torque.
The design of a helical planetary geartrain is complicated. It must comply with several constraints. These constraints relate to the geometrical relationship of the planetary geartrains. This study of the possible design space of a Helical geartrain uses geometric layouts. The ring gear, sun, and ring gear have no effect on the ratio of the planetary transmission. Nonetheless, helical geartrains are a good choice for many applications.
planetarygearbox

Spur gear planetary gearbox

The combination of planetary gears and spur gears in a transmission system is called a planetary or spur gearbox. Both the planetary gear and spur gear have their own characteristics and are used in various kinds of vehicles. They work in a similar way, but are built differently. Here are some important differences between the two types of gears. Listed below are some of the most important differences between them:
Helical gears: As opposed to spur gears, helical gears generate significant axial forces in the gear mesh. They also feature greater sliding contact at the point of tooth contact. The helix angle of a gearbox is generally in the range of 15 to 30 degrees. The higher the helix angle, the more axial forces will be transmitted. The axial force in a helical gearbox is greater than that of a spur gear, which is the reason why helical gears are more efficient.
As you can see, the planetary gearhead has many variations and applications. However, you should take care in selecting the number of teeth for your planetary gear system. A five:1 spur gear drive ratio, for example, means that the sun gear needs to complete five revolutions for every output carrier revolution. To achieve this, you’ll want to select a sun gear with 24 teeth, or five mm for each revolution. You’ll need to know the metric units of the planetary gearhead for it to be compatible with different types of machines.
Another important feature of a planetary gearbox is that it doesn’t require all of the spur gears to rotate around the axis of the drive shaft. Instead, the spur gears’ internal teeth are fixed and the drive shaft is in the same direction as the output shaft. If you choose a planetary gearbox with fixed internal teeth, you’ll need to make sure that it has enough lubrication.
The other significant difference between a spur gear and a planetary gearbox is the pitch. A planetary gearbox has a high pitch diameter, while a spur gear has low pitch. A spur gear is able to handle higher torques, but isn’t as efficient. In addition, its higher torque capability is a big drawback. Its efficiency is similar to that of a spur gear, but it is much less noisy.
Another difference between planetary and spur gear motors is their cost. Planetary gear motors tend to be more expensive than spur gear motors. But spur gears are cheaper to produce, as the gears themselves are smaller and simpler. However, planetary gear motors are more efficient and powerful. They can handle lower torque applications. But each gear carries a fixed load, limiting their torque. A spur gear motor also has fewer internal frictions, so it is often suited for lower torque applications.
Another difference between spur gears and planetary gears is their orientation. Single spur gears are not coaxial gearboxes, so they’re not coaxial. On the other hand, a planetary gearbox is coaxial, meaning its input shaft is also coaxial. In addition to this, a planetary gearbox is made of two sets of gear wheels with the same orientation. This gives it the ability to achieve concentricity.
Another difference between spur gears and planetary gears is that a planetary gear has an integer number of teeth. This is important because each gear must mesh with a sun gear or a ring gear. Moreover, each planet must have a corresponding number of teeth. For each planet to mesh with the sun, the teeth must have a certain distance apart from the other. The spacing between planets also matters.
Besides the size, the planetary gear system is also known as epicyclic gearing. A planetary gear system has a sun gear in the center, which serves as the input gear. This gear has at least three driven gears. These gears engage with each other from the inside and form an internal spur gear design. These gear sets are highly durable and able to change ratios. If desired, a planetary gear train can be converted to another ratio, thereby enhancing its efficiency.
Another important difference between a spur gear and a planetary gearbox is the type of teeth. A spur gear has teeth that are parallel to the shaft, while a planetary gear has teeth that are angled. This type of gear is most suitable for low-speed applications, where torque is necessary to move the actuation object. Spur gears also produce noise and can damage gear teeth due to repeated collisions. A spur gear can also slip, preventing torque from reaching the actuation object.

China Wholesale High Precision Planetary Gearbox With Competitively Price     planetary gearbox bearingsChina Wholesale High Precision Planetary Gearbox With Competitively Price     planetary gearbox bearings
editor by czh 2022-12-31

Recent Posts