China wholesaler CZPT CZPT 5: 1 10: 1 Prf90 Planetary Gearbox for Servo Motor Stepper Motor gearbox and motor

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

 
PLF series, PLE series, ZPLF series, ZPLE series, AB series, ABR series and many other models are available.

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

Advantages of the planetary gearbox:

Low backlash

High Efficiency

High Torque

High Input Speed

High Stability

High Reduction Ratio

Detailed Photos

Product Parameters

Name

High Precision Planetary Gearbox

Model

AB042, AB060, AB060A, AB090A, AB115, AB142, AB180, AB220

Gearing Arrangement

Planetary

Effeiency withfull load

≥97

Backlash

≤5

Weight

0.5~48kg

Gear Type

Helical Gear

Gear stages

1 stage, 2 stage 

Rated Torque

14N.m-2000N.m

Gear Ratio One-stage

3, 4, 5, 6, 7, 8, 9, 10

Gear Ratio Two-stage

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

Mounting Position

Horizontal (foot mounted) or Vertical (flange mounted)

Usage

stepper motor, servo motor, AC motor, DC motor, etc

External Mounting Dimensions

1 stage reduction ratio 3~10

2 stage reduction ratio 15~100

Applications

Product Overview:

 

 Precision planetary gear reducer is another name for planetary gear reducer in the industry. Its main transmission structure is planetary gear, sun gear and inner gear ring.

Compared with other gear reducers, precision planetary gear reducers have the characteristics of high rigidity, high precision (single stage can achieve less than 1 point), high transmission efficiency (single stage can achieve 97% – 98%), high torque/volume ratio, lifelong maintenance-free, etc. Most of them are installed on stepper motor and servo motor to reduce speed, improve torque and match inertia.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Ab Series Gearbox, Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

planetary gearbox

Considerations for Selecting Planetary Gearboxes for Aerospace and Satellite Applications

Selecting planetary gearboxes for aerospace and satellite applications requires careful consideration due to the unique demands of these industries:

  • Weight and Size: Aerospace and satellite systems demand lightweight and compact components. Planetary gearboxes with high power density and lightweight materials are preferred to minimize the overall weight and size of the equipment.
  • Reliability: Aerospace missions involve critical operations where component failure is not an option. Planetary gearboxes with a proven track record of reliability and durability are essential to ensure mission success.
  • High Efficiency: Efficiency is crucial in aerospace applications to optimize power usage and extend the operational life of satellites. Planetary gearboxes with high efficiency ratings contribute to energy conservation.
  • Extreme Environments: Aerospace and satellite systems are exposed to harsh conditions such as vacuum, extreme temperatures, and radiation. Planetary gearboxes need to be designed and tested to withstand these conditions without compromising performance.
  • Precision and Accuracy: Many aerospace operations require precise positioning and accurate control. Planetary gearboxes with minimal backlash and high precision gear meshing contribute to accurate movements.
  • Lubrication: Lubrication plays a vital role in aerospace gearboxes to ensure smooth operation and prevent wear. Gearboxes with efficient lubrication systems or self-lubricating materials are favored.
  • Redundancy and Fail-Safe: Some aerospace systems incorporate redundancy to ensure mission success even in case of component failure. Planetary gearboxes with built-in redundancy or fail-safe mechanisms enhance system reliability.
  • Integration: Planetary gearboxes need to be seamlessly integrated into the overall design of aerospace and satellite systems. Customization options and compatibility with other components are important factors.

Overall, selecting planetary gearboxes for aerospace and satellite applications involves a comprehensive evaluation of factors related to weight, reliability, efficiency, durability, environmental resistance, precision, and integration to meet the unique demands of these industries.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Impact of Gear Ratio on Output Speed and Torque in Planetary Gearboxes

The gear ratio of a planetary gearbox has a significant effect on both the output speed and torque of the system. The gear ratio is defined as the ratio of the number of teeth on the driven gear (output) to the number of teeth on the driving gear (input).

1. Output Speed: The gear ratio determines the relationship between the input and output speeds of the gearbox. A higher gear ratio (more teeth on the output gear) results in a lower output speed compared to the input speed. Conversely, a lower gear ratio (fewer teeth on the output gear) leads to a higher output speed relative to the input speed.

2. Output Torque: The gear ratio also affects the output torque of the gearbox. An increase in gear ratio amplifies the torque delivered at the output, making it higher than the input torque. Conversely, a decrease in gear ratio reduces the output torque relative to the input torque.

The relationship between gear ratio, output speed, and output torque is inversely proportional. This means that as the gear ratio increases and output speed decreases, the output torque proportionally increases. Conversely, as the gear ratio decreases and output speed increases, the output torque proportionally decreases.

It’s important to note that the gear ratio selection in a planetary gearbox involves trade-offs between output speed and torque. Engineers choose a gear ratio that aligns with the specific application’s requirements, considering factors such as desired speed, torque, and efficiency.

China wholesaler CZPT CZPT 5: 1 10: 1 Prf90 Planetary Gearbox for Servo Motor Stepper Motor   gearbox and motor	China wholesaler CZPT CZPT 5: 1 10: 1 Prf90 Planetary Gearbox for Servo Motor Stepper Motor   gearbox and motor
editor by CX 2024-04-10

Recent Posts