China Good quality Pfn160 Hole Output 1500W Motor Planetary Reduction Gearbox gearbox design

Product Description

PFN160 Hole Output 1500W Motor Planetary Reduction Gearbox

The high-precision planetary gearbox adopts spur gear design, and is used in various control transmission fields with servo motors, such as precision machine tools, laser cutting equipment, battery processing equipment, etc. It has the advantages of large torsional rigidity and large output torque.

Product Description

Characteristics:

1.Hole output structure,easy installation.

2.Straight tooth drive ,single cantilever structure.simple design,economic price.

3.Working steady. Low noise..

4.Backlash 8-16 arcmin. Can suit most occasion.

5.The input connection specifications are complete and there are many choices.
6.Keyway can be opened in the force shaft.

Product Parameters

Specifications PFN60 PFN80 PFN90 PFN120 PFN160
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 240 400 450 1240 2250
Max. Axial Load N 220 420 430 1000 1500
Torsional Rigidity Nm/arcmin 1.8 4.7 4.85 11 35
Max.Input Speed rpm 8000 6000 6000 6000 4000
Rated Input Speed rpm 4000 3500 3500 3500 3000
Noise dB ≤58 ≤60 ≤60 ≤65 ≤70
Average Life Time h 20000
Efficiency Of Full Load % L1≥96%                     L2≥94%
Return Backlash P1 L1 arcmin ≤8 ≤8 ≤8 ≤8 ≤8
L2 arcmin ≤12 ≤12 ≤12 ≤12 ≤12
P2 L1 arcmin ≤16 ≤16 ≤16 ≤16 ≤16
L2 arcmin ≤20 ≤20 ≤20 ≤20 ≤20
Moment Of Inertia Table L1 3 Kg*cm2 0.46 0.77 1.73 12.78 36.72
4 Kg*cm2 0.46 0.77 1.73 12.78 36.72
5 Kg*cm2 0.46 0.77 1.73 12.78 36.72
7 Kg*cm2 0.41 0.65 1.42 11.38 34.02
10 Kg*cm2 0.41 0.65 1.42 11.38 34.02
L2 12 Kg*cm2 0.44 0.72 1.49 12.18 34.24
15 Kg*cm2 0.44 0.72 1.49 12.18 34.24
16 Kg*cm2 0.44 0.72 1.49 12.18 34.24
20 Kg*cm2 0.44 0.72 1.49 12.18 34.24
25 Kg*cm2 0.44 0.72 1.49 12.18 34.24
28 Kg*cm2 0.44 0.72 1.49 12.18 34.24
30 Kg*cm2 0.44 0.72 1.49 12.18 34.24
35 Kg*cm2 0.44 0.72 1.49 12.18 34.24
40 Kg*cm2 0.44 0.72 1.49 12.18 34.24
50 Kg*cm2 0.34 0.58 1.25 11.48 34.02
70 Kg*cm2 0.34 0.58 1.25 11.48 34.02
100 Kg*cm2 0.34 0.58 1.25 11.48 34.02
Technical Parameter Level Ratio   PFN60 PFN80 PFN90 PFN120 PFN160
Rated Torque L1 3 Nm 27 50 96 161 364
4 Nm 40 90 122 210 423
5 Nm 40 90 122 210 423
7 Nm 34 48 95 170 358
10 Nm 16 22 56 86 210
L2 12 Nm 27 50 96 161 364
15 Nm 27 50 96 161 364
16 Nm 40 90 122 210 423
20 Nm 40 90 122 210 423
25 Nm 40 90 122 210 423
28 Nm 40 90 122 210 423
30 Nm 27 50 96 161 364
35 Nm 40 90 122 210 423
40 Nm 40 90 122 210 423
50 Nm 40 90 122 210 423
70 Nm 34 48 95 170 358
100 Nm 16 22 56 86 210
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 0.95 2.27 3.06 6.93 15.5
L2 kg 1.2 2.8 3.86 8.98 17

Company Profile

Packaging & Shipping

1. Lead time: 10-15 days as usual, 30 days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ EMS/ TNT/ FEDEX

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Motorcycle, Machinery, Marine, Agricultural Machinery, Machine Tool Manufacturing
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Single-Step
Samples:
US$ 315/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment

Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:

High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.

Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.

Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.

Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.

Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.

Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.

Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.

planetary gearbox

Common Applications and Industries of Planetary Gearboxes

Planetary gearboxes are widely utilized across various industries and applications due to their unique design and performance characteristics. Some common applications and industries where planetary gearboxes are commonly used include:

  • Automotive Industry: Planetary gearboxes are found in automatic transmissions, hybrid vehicle systems, and powertrains. They provide efficient torque conversion and variable gear ratios.
  • Robotics: Planetary gearboxes are used in robotic joints and manipulators, providing compact and high-torque solutions for precise movement.
  • Industrial Machinery: They are employed in conveyors, cranes, pumps, mixers, and various heavy-duty machinery where high torque and compact design are essential.
  • Aerospace: Aerospace applications include aircraft actuation systems, landing gear mechanisms, and satellite deployment mechanisms.
  • Material Handling: Planetary gearboxes are used in equipment like forklifts and pallet jacks to provide controlled movement and high lifting capabilities.
  • Renewable Energy: Wind turbines use planetary gearboxes to convert low-speed, high-torque rotational motion of the blades into higher-speed rotational motion for power generation.
  • Medical Devices: Planetary gearboxes find applications in medical imaging equipment, prosthetics, and surgical robots for precise and controlled motion.
  • Mining and Construction: Planetary gearboxes are used in heavy equipment like excavators, loaders, and bulldozers to handle heavy loads and provide controlled movement.
  • Marine Industry: They are employed in marine propulsion systems, winches, and steering mechanisms, benefiting from their compact design and high torque capabilities.

The versatility of planetary gearboxes makes them suitable for applications that require compact size, high torque density, and efficient power transmission. Their ability to handle varying torque loads, offer high gear ratios, and maintain consistent performance has led to their widespread adoption across numerous industries.

China Good quality Pfn160 Hole Output 1500W Motor Planetary Reduction Gearbox   gearbox design		China Good quality Pfn160 Hole Output 1500W Motor Planetary Reduction Gearbox   gearbox design
editor by CX 2024-05-09

Recent Posts